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ABSTRACT 

While production statistics are reported on a geopolitical – often national - basis 

we often need to know, for example, the status of production or productivity within 

specific sub-regions, watersheds, or agro-ecological zones. Such re-aggregations are 

typically made using expert judgments or simple area-weighting rules. We describe a 

new, entropy-based approach to the plausible estimates of the spatial distribution of crop 

production. Using this approach tabular crop production statistics are blended judiciously 

with an array of other secondary data to assess the production of specific crops within 

individual ‘pixels’ – typically 1 to 25 square kilometers in size. The information utilized 

includes crop production statistics, farming system characterization, satellite-based 

interpretation of land cover, biophysical crop suitability assessments, and population 

density. An application is presented in which Brazilian state level production statistics are 

used to generate pixel level crop production data for eight crops. To validate the spatial 

allocation we aggregated the pixel estimates to obtain synthetic estimates of municipio 

level  production in Brazil, and compared those estimates with actual municipio statistics. 

The approach produced extremely promising results. We then examined the robustness of 

these results compared to short-cut approaches to spatializing crop production statistics 

and showed that, while computationally intensive, the cross-entropy method does provide 

more reliable spatial allocations.  

JEL classification: C60; Q15; Q24 

Key Words: Entropy, cross entropy, remote sensing, spatial allocation, production, crop 

suitability  
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1. Introduction and Rationale 

Internationally comparable series of annual crop production data are available at a 

national scale from FAO and USDA. While very rich in their commodity coverage, these 

data give no clue as to the geographic distribution of production within country 

boundaries. Several (sub-)regional collection efforts have been made by centres of the 

CGIAR (e.g., Carter et al, 1992; CIAT, 1996; CIP, 1999; Ladha et al, 2000; ILRI, 2001; 

IFPRI, 2001), by FAO (Gommes, 1996), and by the Famine Early Warning System 

(FEWS) in parts of Africa (http://www.fewsnet.org/). With the exception of the on-going 

mandate of FEWS to compile sub-national agricultural production and market data in 

many parts of sub-Saharan Africa, all of these were limited, one time efforts. Such 

collections of sub-national data are much more limited both in country and time 

coverage. The enormous gaps in geographic, time period, and crop coverage are unlikely 

ever to be filled. But even when sub-national data are available, they are often still 

inadequate in terms of providing sufficiently detailed insights into the location of 

production. Obtaining sub-national agricultural production data for, say, Lampung 

province in Indonesia, the state of Rondonia in Brazil, or the Valle de Cauca department 

in Colombia, would still reveal nothing about spatial variability of production within 

those areas of many thousand square kilometres, and yet to compile all such data 

globally, or even regionally, represents a formidable data discovery and harmonization 

challenge.1 To combat this situation, the spatial allocation approach described in this 

                                                 

1 Another even more challenging approach is to compile regional estimates of the spatial variation of crop 
production from national agricultural surveys and censuses. While such surveys typically allow greater 
spatial resolution in the determination of crop production, the sampling frameworks employed still limit the 
spatial scale at which results can be generated within acceptable levels of statistical confidence. There are 
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paper attempts to generate plausible allocations of crop production to the scale of 

individual pixels (notionally of arbitrary scale but in this application of some 100 km2), 

through judicious interpretation of all accessible evidence. If this can be done with some 

confidence, we remove one of the major analytical weaknesses of regional and global 

agricultural studies – the inability to objectively re-aggregate production statistics into 

any other geography than national (or even sub-national) administrative boundaries. This 

has been a thorn in the flesh of the many macro studies that set out to analyze production 

and productivity by agro-ecological zones or watersheds, e.g., the agricultural research 

priorities study of Davis, Oram, and Ryan (1987), the CGIAR’s Regional AEZ strategies 

of the 1990s (TAC 1992), the global food perspective studies from FAO (Alexandratos 

1996; Bruinsma 2003), IFPRI (Rosegrant et al, 2001), and agroecosystem assessments 

(Wood, Sebastian and Scherr, 2000).  

While it is technically feasible to detect the locations of some types of crops or 

crop groups (paddy rice and orchards being prime examples) using high-resolution 

satellite imagery such as LANDSAT and SPOT, together with proper ground-truthing, 

national land cover mapping conventionally focuses on the delineation of “natural” 

ecosystems that are often easier to detect, and of more direct interest to the forestry, 

wildlife, or environmental agencies who usually commission this type of work. The 

global 1km land cover database (IGBP 1998) does contain some crop-specific 

agricultural land cover interpretations in its regional and pre-classified background data 

(the Seasonal Land Cover Regions), but they are few and inconsistently applied. This 

global dataset does, however, provide a relatively detailed picture of where 
                                                                                                                                                 

also many complexities in conversion of local measurement units into standard units of area and quantity, 
and such surveys are often made only once per decade.  
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(undifferentiated) croplands may be found, and this is the very set of spatial boundaries 

within which crop-specific analyses can take place.  

[Figure 1 The task of spatial crop allocation] 

 Figure 1 shows, diagrammatically, the challenge faced by the spatial allocation 

approach. The bold closed-curve shows the boundary of the geographical area within 

which we wish to identify specific pixels where specific crops are grown. The 

geographical area in our case is the (geopolitical) statistical reporting unit (SRU) for 

which we have been able to obtain production statistics. These may be national, first 

administrative level, e.g. state, or second administrative level, e.g., counties. The SRU is 

divided into pixels whose actual sizes depend upon the spatial resolution of available 

spatial data such as land cover and crop suitability surfaces. Knowing the reported 

harvested areas and production of crops in this SRU, the task of the spatial allocation 

model is to simultaneously allocate these crop areas and productions into those pixels 

within the geopolitical boundary where individual crops are most likely to be found. 

Some pixels may be allocated no crops, some pixels might be allocated some share of the 

SRU total for a single crop, and some pixels may be allocated multiple crops. The 

approach allows any single pixel to be occupied by multiple crops simultaneously.  

 The paper is organized as follows. The next section describes the types of 

information we use in the spatial allocation process. Section 3 introduces the allocation 

methodology – the cross-entropy method. In this section we first introduce the entropy 

concept, then describe the spatial allocation model in detail. Section 4 applies our model 

to data compiled for Brazil, a very large and agroecologically diverse country. We 

describe the application of the model and evaluate the accuracy of the allocation results. 



 6

In addition, we also compare the current model with other simplified crop allocation 

methods. Section 5 discusses the results and describes ongoing efforts to further develop 

the spatial allocation model.  

2. Information Used to Assess the Spatial Distribution of Crop 

Production 

The goal of the allocation is to spatially disaggregate SRU tabular statistics and 

assign them to specific “pixels” within a gridded map of the SRU. The information used 

to guide the spatial allocation comes in various forms. 

1. Crop production statistics. The data include the harvested areas, production, and 

average yield for each crop being included in the allocation exercise. This tabular 

data is derived from international or national sources (e.g., FAOSTAT for 

national SRUs, national statistical yearbooks for first administrative level SRUs, 

and agricultural surveys for second level SRUs) 

2. Production system structure. Agricultural production is diverse in terms of 

farming technology and the farm size. Normally, commercial farmers use more 

and higher quality production inputs such as high-yielding varieties, irrigation, 

fertilizers, pesticides, credit and market information, while subsistence farmers 

often rely on traditional cultivars and less replenishment of nutrients. The intent 

of partitioning of crop production among the various major production system 

types is to provide the allocation model with some guidance as to the manner in 

which different crops are produced. High input systems will likely have higher 

yields and are likely found in more favorable areas. This set of information could 

be obtained (with much effort) from a mix of sources such as small-scale studies, 
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farming system studies, country reports, agriculture survey data and even expert 

opinion. 

3. Cropping intensity. Cropping intensity is defined as the number of cropping 

within a year for a certain crop. Most production statistics report the crop areas in 

terms of area harvested. From a spatial allocation perspective and consistency 

with satellite image of land cover, we need to convert harvested to physical areas. 

For example an irrigated rice field may produce two crops per year. Thus the 

100,000 hectares of harvested rice reported in the SRU statistics is obtained from 

just 50,000 hectares of land. Similarly, maize and beans may be grown in 

combination in a single season. Thus 50,000 hectares of maize-bean cultivation 

will produce 50,000 hectares of both maize and beans during a given year. Thus 

for each crop, for each major type of production system identified, we must assess 

the relevant cropping intensity.  

4. Cropland extent: Satellite-based land cover imagery is a key input in guiding the 

spatial allocation of crops. Based upon the processed image classifications, we 

reclassify the imagery into cropland extent and non-cropland. This remote sensing 

imagery provides the most detailed spatial data of the agricultural production. By 

default we will only allocate crop production within the extent of cropland as 

depicted by satellite data.  

5. Crop Suitability. To a significant extent, the patterns and intensities of crop 

production are determined by the biophysical and soil conditions such as local 

landscape, variation in radiation, temperature, humidity, and rainfall, the quality 

of soil, and the occurrence of frosts, floods and droughts. There are many ways to 
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assess and represent the biophysical suitability of crop production, from general 

suitability classes through to estimates of potential yield and suitable areas under 

the given set of conditions at any location. Initially, FAO developed crop-specific 

hand-drawn map of crop suitability classes using spatial data on major climate 

regimes and length of growing period (FAO, 1981). More recently these 

approaches have been extended to the generation of digital suitability surfaces in 

the form of potential crop yields and suitable areas (Fischer et al, 2000). These 

new assessments of crop suitability also take account of soil related and slope 

factors.  

6. Existing crop distribution maps.  Any existing digitized or mapped data of the 

spatial distribution of specific crop based on direct field observation is a very 

valuable information source. In the current approach, the priors are very important 

and the existing crop distribution maps, even if it is only partial in its geographic 

coverage, improve our prior knowledge of where crops might actually be grown. 

For example, there are dot maps of production areas with the size of dots 

representing the size the production. The challenge is to correctly interpret the 

data and convert dots representing certain hectares (e.g. 100, 500, 2000) of crop 

production to actual spatially referenced cropped area.  

3. Cross Entropy Approach 

All the above information can be brought to bear on the spatial allocation of 

agricultural production one way or the other. But we need an approach that can utilize all 

such information, but that recognizes that the information may be limited, partially 

correct, and sometimes conflicting. Golan, Judge and Miller (1996) proposed various 
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estimation techniques based on the principles of entropy. The advantage of this approach 

is described by Zellner (1988) as satisfying the “information conservation principle”, 

namely that the estimation procedure should neither ignore any input information nor 

inject any false information (Robinson et al, 2000). In this sense, the entropy approach is 

an efficient information processing procedure for the spatial allocation task. The spatial 

allocation model uses the cross entropy (CE) approach that allows for the inclusion of 

prior knowledge about crop distribution. Using this methodology to allocate area within 

any particular geopolitical domain, it is straightforward to apply constraints that allocated 

areas are non-negative and that they sum up to the total reported area of each crop. The 

approach is also flexible in supporting the inclusion of additional equality or non–

equality constraints that are considered to reflect the conditions under which the crop 

allocation must be performed. 

3.1 Information Entropy 

The cross entropy formulation is based upon the entropy concept in information 

theory originated by Shannon (1948). For a given probability distribution { p1, p2, …, 

pk}, Shannon’s information entropy (amount of information) is defined as 

(1)   ∑
=

−=
k

i
iik pppppH

1
21 ln),,,( K  

where ln0=0 by convention, which means zero probability yields zero information.  

Jaynes (1957) proposed a principle of maximum entropy to identify an unknown 

distribution of probability from given moment constraints. Kullback (1959), Good (1963) 

introduced the notion of cross-entropy, CE, which is a measure of the discrepancy 

between the two probability distributions, say pi and qi. 
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The cross entropy minimization approach provides a model formulation in which the 

discrepancies between p and its prior, q, are minimized subject to certain constraints.  

3.2 Spatial Allocation Model 

 Here we define our spatial crop allocation problem in a cross entropy framework. 

The first thing to do is to transform all real-value parameters into a corresponding 

probability form. We first need to convert the reported harvested area, HarvestedAreaj for 

each crop into an equivalent physically cropped area, CropAreaj., using cropping 

intensity. 

(3a)    jjj tensityCroppingInaHarvestAreCropArea /=  

Another fundamental feature of crop production is production system distinguished by 

different levels of farming technologies. Farmers adopt quite different farming 

technologies to produce the same crop from one location to another, and these 

technologies greatly affect the crop performance. In the current model, we disaggregate 

each crop (e.g. rice) into three distinctive “crops” by the level of inputs and management, 

namely, irrigated, high-input rainfed, low-input rainfed (e.g. irrigated rice, high-input 

rainfed rice and low-input rainfed rice). Irrigated production is that equipped with 

irrigation equipment, and normally using high-yield modern varieties. By high-input 

rainfed, we mean rainfed production that is based on high-yielding varieties with modern 

inputs such as mechanics, nutrients, chemical pest and disease control. This production is 

mainly market oriented. Low input rainfed production means that based on traditional 
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cultivars and labor-intensive techniques with no applications of nutrients. This system is 

largely subsistence or smallholder based. Let sijl be the share of the cropped area of crop j 

at input leve l allocated to pixel i, and since CropAreaj is the total physical area for crop j, 

the area allocated to pixel i for crop j, Aijl, is 

(3b)    ijljljijl sShareCropAreaA ××=  

where Sharejl is the share of total physical area for crop j at input level l . 

In general we have some prior knowledge on crop-specific area distributions. Let 

πijl be the prior area shares we know for pixel i and crop j at input level l. The prior can 

be based upon an examination of existing crop distribution maps or any other information 

deemed relevant. For example, one could estimate a prior on crop distribution based upon 

biophysical, soil, social-economic attributions. The minimum cross entropy model is to 

choose a set of area shares sijl , such that 

(4)  ∑ ∑∑∑∑∑ −=
i i j l

ijlijl
j l

ijlijlijlijls
ssssCEMIN

ijl

ππ lnln),(
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subject to: 

(5)   ljs
i

ijl ∀∀=∑ 1  

(6)   iAvailsShareCropArea i
j l

ijljlj ∀≤××∑∑  

(7)   ljiSuitablesShareCropArea ijlijljlj ∀∀∀≤××  

(8)   ljisijl ,,01 ∀≥≥  

where: 

 i : i = 1, 2, 3, …, pixel identifier within the allocation unit, and 

j: j = 1, 2, 3, …, crop identifier within the allocation unit, and 
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l: l = irrigated, rainfed-high input, rainfed-low input, management and input level fro 

crops. 

Availi: total agricultural land in pixel i, which is equal to total agricultural area estimated 

from land cover satellite image as described in the previous section.  

Suitableijl: the suitable area for crop j at input level l in pixel i, which comes from 

FAO/IIASA suitability surfaces as introduced in the previous section. 

The objective function of the spatial allocation model is the cross entropy of area 

shares and their prior. Equation (5) is adding-up constraints for crop-specific areas. 

Equation (6) is land cover image constraint that the actual agricultural area in pixel i from 

satellite image is the upper limit for the area to be allocated to all crops. Equation (7) is 

the constraint that the allocated crop area cannot exceed what are suitable for the 

particular crop. The last equation, Equation (8) is basically the natural constraint of sijl as 

shares of total crop areas. As we can see, the essence of this classic CE approach is to use 

any and all sources of information to best guess where crops might actually grow. In this 

sense, the spatial allocation model finds a solution that is consistent with the mean value 

of the aggregated data. The criterion for choosing the solution (out of many possible 

solutions because the problem is under-determine) is to minimize the entropy-based 

divergence from the prior.  

 Obviously, an informative prior is quite important for the success of the model. If 

some coarse crop distribution maps such as dots maps exist, we will definitely use them 

as the prior. However, we don’t have such a luxury in most situations or we only have 

partial (both in terms of crops and geographic coverage) data. In such cases, we resort to 

some simplified methods of allocating crop production used in the past. The most 
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common method uses other information layers such as total land area, cropland and crop 

suitable areas.  We choose crop suitability surfaces by FAO/IIASA because only this 

dataset provides the crop-specific information. The potential yields for crop j at input 

level l and pixel i, Suitabilityijl, is normalized to produce the prior: 

(9)  lij
ySuitabilit

ySuitabilit

i
ijl

ijl
ijl ∀∀∀=

∑
π  

However, the crop suitability algorithm is purely based on the biophysical conditions. 

This may not reflect the reality in the field. For example, some remote areas may be quite 

suitable for certain agricultural crops but have not cultivated yet. We overlay crop 

suitability surface with the population density map, and change the suitability to zero (not 

suitable) for those pixels where population density is either extremely low (or zero) or 

extremely high (urban areas). This would produce a more realistic prior. In addition, we 

may simply take the normalized  rural population density as the prior for low input 

rainfed portion of the crop if we identify that crop to be a subsistence one. 

4. Model Application 

We apply the above model to Brazil. Brazil has a total land area over 8.5 million 

square kilometers, in which only 6% is cropland. It is rich in natural resources and 

biodiversity, heterogeneous in agroecological conditions with quite different farming 

systems within its boundary.  The first level administrative region is called state, the 

third-level municipio. Though there are only 27 states, there are over 4490 municipios in 

Brazil, averaging over 160 municipios per state. The spatial resolution in the current 

application is 5 by 5 Arc minutes, and the grid cell (pixel) with this resolution is about 
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9km by 9km (around 8,500 hectares) at the equator, and the cell size varies depending 

upon the latitude of that pixel. Brazil is covered by over 100,000 pixels of that size. 

Figure 2 shows the cropland, population density and the suitability map of maize for 

Brazil in 1994. Agricultural land is expressed as the percentage of each pixel occupied by 

cropland, as shown in Figure 2(a). This agricultural extent is estimated from the 1-km 

resolution global land cover database developed by the EROS DATA Center of the U.S. 

Geological Survey (Wood, Sebastian and Scherr 2000; Ramankutty and Foley 1998). 

Based upon the agricultural extent as shown in Figure 2(a), we calculate the agricultural 

area in each pixel by taking account of the change of pixel area with latitude. Figure 2(b) 

is the population density map. We set the population density limits of 5 persons/km2 and 

500 persons/km2 for possible crop growing areas. In other words, the land beyond this 

range would be either city or forestry with little agriculture. As pointed out in Section 2, 

FAO/IIASA’s newly-developed crop suitability surfaces are rich sources of information 

on both potential yields and suitable areas for each commodity under different 

management/input assumptions. FAO/IIASA suitability surfaces are defined for five 

production system types for each crop: rainfed - high input, rainfed – intermediate input, 

rainfed – low input, irrigated – high input and irrigated – intermediate input. 

Corresponding to our model specification, we omit the two intermediate input classes and 

represent production by just three input classes, namely, high-input rainfed, low-input 

rainfed and high-input irrigated (referred to henceforth as irrigated). We defined suitable 

areas within each pixel as the sum of the following four suitability classes in the original 

FAO/IIASA suitability database: very suitable, suitable, moderate suitable and marginal 

suitable. Accordingly the yield is calculated as the area-weighted average of the yields in 
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the above four suitable classes. As an example, Figure 2(c) shows the suitable areas of 

maize and Figure 2(d) the potential yield distribution of maize. These maps provide the 

spatial allocation model the critical information on total agricultural land, yield 

suitability, and suitable areas. 

[Figure 2 Agriculture land, market accessibility and suitability maps of maize] 

The following eight crops are included in the spatial allocation model for Brazil: rice, 

wheat, maize, cassava, potato, green bean and soybean. Collectively, these eight crops 

account for nearly one quarter of the value of Brazilian agricultural output in 2000, and 

nearly half of all crop output (Alston et al, 2000). The base year of the spatial allocation 

is 1994 in which the satellite image of land cover was taken. To avoid using an atypical 

year, we take the average of 1993-95 statistics as the data for 1994. The allocation units 

are the 27 states in Brazil. We start with the tabular harvested area by state for these eight 

crops as show in Table 1. To be consistent with the suitability data introduced in the 

above, we need to pre-process the harvest area into three categories for each crop: 

irrigated, high-input rainfed, and low-input rainfed. This is done from the information on 

Brazilian farming system as shown in Table 2. Table 2 shows the percentages for 

irrigated and high-input rainfed areas for all the eight original crops in the 27 states of 

Brazil. Obviously, the percentage of the low-input rainfed area is the residual of 100% 

minus the sum of the above two percentages.  In addition, some crops, in particular 

irrigated ones such as rice, are multiple cropped in many regions. The physical crop area 

to be allocated is calculated by dividing the harvested area in each of the above three 
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categories for each crop by its corresponding cropping intensity2. Treating the irrigated, 

high-input rainfed and low-input rainfed for each crop as individual “crops”(in the 

modeling sense), the total crop numbers for the current Brazil case is 24.  

[Table 1 Harvested area by states in Brazil(1993-95)] 

 [Table 2 Farming systems in Brazil (1993-95)] 

The spatial allocation model described in the above section is performed for every 

state in Brazil to simultaneously allocate all the 24 “crop” areas into the pixels across the 

entire state. GAMS (GAMS, 2002) is used to solve the optimization problem3. The output 

is the crop areas per pixel in Brazil. Figure 3 shows the resulting spatial allocation of the 

eight crops on pixel level for Brazil. The intent of the spatial allocation model is not to try 

to match the real-world pixel by pixel, but rather to derive a substantially more 

informative spatial allocation of crop-specific area (production) than what is provided by 

production statistics shown in Table 1. We can see from Figure 3 that there is quite large 

variation of crop distribution among and within the states. Potato and sorghum are quite 

spread out while the productions of soybean and maize are more concentrated. These 

pixel-level results can be aggregated into any larger spatial scale proper to the analysis, 

for example watershed or agro-ecological zones.  

[Figure 3 Spatial distribution of crop areas] 

                                                 

2 The eight crops are all single cropped in Brazil except that there are double croppings for all low-input  

bean production in Brazil and for low-input rainfed potato in three states (Minas Gerais, Paraná, 

Tocantins).  

3 The size of optimization problem is huge due to large number of pixels within a state, high-performance 

solver is needed. In the current optimization, we use GAMS newly-developed PATHNLP solver. 
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5. Model Validation and Comparison 

To assess how well the model does the allocation, we aggregate the pixel level 

production obtained from the spatial allocation model into the 4490 municipios in Brazil. 

Then we compare these municipal production estimates with the actual municipal 

production statistics for Brazil. Among the current eight crops, we are able to collect the 

municipal statistics for maize, rice, wheat, bean, cassava, and soybean. Figure 3 shows 

the graphs for these six crops, in which the horizontal axis is the actual municipal 

statistics while the vertical axis is the estimates from the model. The spatial allocations 

for wheat, maize and bean match the municipal statistics very well, with R2 values all 

greater than 0.50. The correlation coefficients for the above three crops are 0.65, 0.54. 

0.53, respectively.  In the graphics for these three crops, the points clearly cluster around 

the 45 degree line from the origin to the upright corner. For the other three crops, 

however, the data points are more dispersed over the whole graphical area. In particular, 

there are quite some points in the lower bottom for both cassava and rice, which means 

much less allocated areas than municipio statistics. The R2 values for cassava, rice and 

soybean are 0.47, 0.43, 0.40, respectively.  

[Figure 4 Correlation of municipal production statistics and predictions made from 

the spatial allocation model: Brazil 1993-95] 

To investigate the reasons for the differences among crops, we need to consider the 

quality of our municipio statistics (though we are attempted to treat these data as the 

“truth”). As we all know, getting subnational production data for developing countries is 

quite a challenge, and the accuracy of such data set is often questionable because of weak 

local capacity. This applies to Brazil municipios statistics data we have here. In addition, 
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we estimated the harvested areas for those municipios which we cannot collect data 

directly by interpolating from historical time series and country-level data. Because of the 

uncertainty on the quality of municipio statistics, we cannot conclude that spatial 

allocations for the other three crops are not accurate. On the other hand, the strong 

correlation between allocation and census data suggests that the statistics data for wheat 

maize and bean are in good quality and the spatial allocations are quite close to the 

reality. Even though we have doubts on the quality of the statistics data, we still regard 

these statistics as “the truth” for the sake of assessing the spatial allocation model. As 

illustrated in Figure 4, the performance of the model is reasonable good with all 

correlation coefficients around 0.5, depending on specific crops. There are several 

reasons for the different performances among crops. First, different crops present 

different difficulties for satellite to capture the crop images. For example most of bean 

and rice producers in Brazil are smallholders. These production scatters sparsely within 

large areas of forest. This presents quite a challenge both for satellite imaging and for the 

subsequent interpretation.  Secondly, the suitability surfaces (yield and suitable area) may 

have different accuracies for different crops in terms of representing the reality on the 

site. The suitability information is the driving forces in the spatial allocation because it 

provides both the prior and the constraints in the model. Third, the extent of the mismatch 

between biophysical suitability and actual local production system may be different from 

crop to crop due to local cultivation history and tradition. In addition, relatively less data 

points (less municipios who produce wheat) may be of the factors contributing the much 

better correlation.  

[Table 3 Comparison of the effectiveness of alternative spatial allocation methods] 
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Without a more elaborate model, we could apply some simplified methods to allocate 

crop production into more disaggregated units. The most common method is simply to 

apply area shares of other information layers such as land area, suitability surface, and 

cropland surface as weights to allocate the total production of SRU into the sub-regions 

within that SRU. Table 3 shows R2 values of comparing the results of such simple 

methods with municipio statistics of Brazil. We use four different layers: physical land 

area, suitable area, cropland, and the joint of cropland and suitable area. Surprisingly, 

even simply distributing the crop production by the physical land areas by municipios 

could get reasonable results (with correlation coefficients around 0.2-0.4). The results 

from cropland surface lead to quite decent correlation coefficients, which implied 

cropland estimation from satellite image is relatively accurate. As expected, our cross-

entropy model beats all the simplified approaches with highest correlation coefficients for 

all crops.  On one hand, these results give us some general idea on what layers give 

“better information” to guide our spatial allocation process. On the other, we could not 

generalize these results because these results are obviously country-specific and depend 

on the particular agricultural farming system of that country. For example, the high 

coefficients from land area shares approach implied that Brazilian productions of these 

six crops are evenly distributed within each state, which may not be true everywhere else. 

5. Final Remarks 

We have proposed a spatial allocation model for crop production statistics based 

on a cross-entropy approach (CE). The approach utilizes information from various 

sources such as satellite imagery, biophysical crop suitability assessments, as well as 

population density, in order to generate plausible, disaggregated estimates of the 
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distribution of crop production on a pixel basis. In the application of the spatial allocation 

model to Brazil, a comparison of actual municipio production statistics with synthetic 

municipio estimates - generated from pixel level disaggregating of state level statistics - 

yielded R2 values between 0.4 and 0.65. We also find that new technologies such as 

remote sensing and image processing prove to be useful tools for exploring the spatial 

heterogeneity of agriculture production, infrastructure and natural resources. On the other 

hand, working at a spatial scale of individual pixels creates many data management and 

computational challenges. Some of these challenges need to be met through improved 

numerical methods and mathematical optimization software. However, the CE results do 

appear to produce spatial patterns of crop production significantly better than any other 

commonly used shortcut methods.  

Though the current model provides what appear, in the absence of “truth” 

regarding the real distribution of production, to be reasonable results, more work is 

underway to improve its performance. The obvious way forward is to improve the 

underlying quality of the parameters currently included in the model, since the end results 

can only be as accurate as the input information. These include better approximations of 

the agricultural extent, more realistic crop suitability surfaces, and more research on the 

association between crop production and population density. On the other hand, we could 

also add more information into the model. For example, household or agricultural survey 

information on the location and quantity of crop production would provide a direct, 

sampled calibration of the entire crop distribution surface. If such information exists and 

it is of reasonable quality, it will definitely improve the estimation accuracy. We could 

also add some other behavioral assumptions. For example, it seems reasonable to assume 
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that farmers would opt to plant a higher revenue crops in any given location, all other 

things being equal. But potential revenue is in reality a proxy for potential profitability, 

and some could argue that risk minimization might also play a role. Thus there are 

several options for further work in exploring alternative drivers of crop choice, both 

individually and in crop combinations, in each location. 
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Figure 1 The task of spatial crop allocation 
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Figure 2 Agriculture land, population density and suitability maps of maize 
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Table 1 Harvested areas by states in Brazil:1993-95 

Source: IFPRI Subnational Data (2000), and EMBRAPA 

Table 2 Farming system in Brazil 1993-95 

 Source: compiled by authors from a variety of statistical sources and expert opinions 
*Note: Balance of production shares from each state are included in “low input rainfed” system 

State Wheat Rice Maize Sorghum Potato Cassava Bean Soybean
(Hectare)

Brazil 1,267,967 4,403,820 13,191,061 138,991 169,681 1,868,646 4,783,341 11,268,031
Acre 34,051 36,402 22,270 15,256
Alagoas 7,335 70,578 30,534 110,775
Amapa 586 2,559
Amazonas 3,223 4,423 34,930 2,672
Bahia 57,089 428,296 17,929 1,433 249,724 583,680 428,119
Ceara 67,045 507,781 365 11 116,276 548,077
District Federal 778 2,058 20,253 81 462 495 5,598 46,149
Espiritu Santo 26,576 100,869 646 20,621 67,139
Goias 3,093 289,420 842,786 31,019 276 17,759 142,947 1,070,754
Maranhao 759,309 602,078 261,855 116,897 64,778
Mato Grosso 461,965 404,532 18,281 24,315 39,646 2,005,885
Mato Grosso do Su 48,360 99,552 410,283 1,042 11 27,570 35,778 1,069,634
Minas Gerais 4,110 375,871 1,487,266 9,417 30,773 77,313 531,982 580,839
Para 204,696 245,100 266,333 81,067
Paraiba 7,180 173,552 24 957 41,987 192,298
Parana 646,682 108,955 2,647,208 164 43,050 147,792 559,837 2,142,562
Pernambuco 5,284 232,759 962 249 85,630 261,661
Piaui 269,344 401,136 12 94,623 288,078 7,286
Rio Grande do Nor 1,758 97,821 3,417 47,691 127,176
Rio Grande do Sul 471,334 983,221 1,782,287 28,660 45,792 107,934 208,633 3,086,668
Rio de Janeiro 17,043 26,812 175 13,781 11,913
Rondonia 143,690 193,290 38,175 147,854 4,861
Roraima 8,783 6,479 2,655 1,578
Santa Catarina 58,227 149,866 1,040,708 18,947 53,200 354,897 213,873
Sao Paulo 35,382 146,696 1,300,673 27,618 26,842 31,996 279,462 524,341
Sergipe 6,466 56,828 57 40,754 59,541
Tocantins 166,758 70,860 9,875 8,897 22,283

State Irrigated Area* High-input Rainfed Area*
Wheat Rice Maize Sorghum Potato Cassava Bean Soybean Wheat Rice Maize Sorghum Potato Cassava Bean Soybean

(%) (%)
Acre 89 63
Alagoas 26 100 16
Amapa 86 63
Amazonas 40 35
Bahia 2 10 0 100 100 50 85 41 10 95
Ceara 16 40 89 40 0
District Federal 100 70 23 100 98 54 15 100
Espiritu Santo 30 71 76 10
Goias 60 2 70 29 40 20 98 100 87 14 99
Maranhao 1 99 39 100 20 0 97
Mato Grosso 20 70 97 100 74 0 99
Mato Grosso do Su 65 98 7 97 74 10 99
Minas Gerais 100 39 40 11 49 84 98 36 66 9 95
Para 80 86 63
Paraiba 48 99 19
Parana 19 80 5 90 24 71 91 53 19 97
Pernambuco 5 41 97 21 0
Piaui 4 10 45 99 45 0 95
Rio Grande do Nor 76 50 24 76 99 36 10
Rio Grande do Sul 79 59 98 43 0
Rio de Janeiro 99 50 85 64 95 41 10 95
Rondonia 100 73 99 76
Roraima 57 95 100 81
Santa Catarina 92 60 78 2 58 90 42 20 90
Sao Paulo 70 24 96 100 91 99 65 15 97
Sergipe 70 100 30 56 98 12
Tocantins 34 96 100 93 98
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Figure 3 Spatial distributions of crop areas 
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Figure 3 Spatial distribution of crop areas (continued) 
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Figure 4 Correlation of municipal production statistics and predictions made from the 

spatial allocation model: Brazil 1993-95 
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Table 3 Comparison of the effectiveness of alternative spatial allocation methods 

 

 

Allocation Methods Correlation Coefficients
wheat rice maize cassava bean soybean

Land Area Shares 0.26 0.31 0.47 0.38 0.40 0.27
Suitable Area Shares
       Low Input 0.17 0.31 0.22 0.32 0.26 0.11
       High Input 0.37 0.34 0.37 0.37 0.35 0.08
       Irrigated -0.04 0.32 0.01 0.45 0.13 -0.01
       Mixed 0.15 0.38 0.17 0.39 0.28 0.04
Cropland Shares 0.38 0.31 0.44 0.38 0.25 0.37
Cross Entropy 0.65 0.44 0.54 0.47 0.53 0.40


